Healthcare Informatics and Health Information Technology: A Discussion on Content and Educational Strategies

Kenneth C. Lam, ScD, ATC

Professor of Clinical Research A.T. Still University

ATSU

ATHLETIC TRAINING

Director
Athletic Training Practice-Based Research Network (AT-PBRN)

 $AT {^{\not \sim}} PBRN$

1

Objectives

- · The use of health information technology
 - The use of electronic records
 - Other important roles HIT plays**
- Fundamentals of healthcare informatics
- Basic content and concepts
- A quick crash course**
- Teaching strategies: basic healthcare informatics
 - Sample learning activities
 - Real world examples
 - Integrating concepts across multiple classes

2

HIT: Defined

- The use of hardware and software to store, retrieve, and share health information
 - $-\,$ Goal: improve communication and clinical decisions $\mbox{\scriptsize (Brailer, 2006)}$
- Types of HIT
 - Computerized physician order entry, clinical decision support
 - Computers, electronic medical records, Internet
 - Emerging technologies: mobile devices (smartphones, tablets), text messaging, "apps", social media sites

Informatics: Defined

- The study of the application of computer and statistical techniques to manage data
- The science and art of turning <u>data into information</u> for the purposes of problem-solving and decision-making
 - $\,-\,$ This includes collecting, analyzing, and using data to inform decisions

4

A Brief History

- · Global health care needs
- Targeted initiatives
- · Athletic training efforts

5

A Brief History: Global Health Care Needs

- Crossing the Quality Chasm (IOM, 2001)
 - Landmark document identifying the gap between the care we should receive and the care we do receive
 - A call for systems change including use of health information technology (HIT) and informatics
- Health Profession Education (IOM, 2003)
 - Identification of $\underline{\text{\bf core competencies}}$ for health care education
 - Evidence-based practice, interprofessional practice, professionalism, quality improvement, <u>informatics</u>

A Brief History: Targeted Initiatives

- Part of the 2009 American Recovery and Reinvestment Act (ie, "Stimulus package" in response to Great Recession)
- Earmarked \$34 billion to incentivize use of electronic health records
- Aim was to create a national health information network to collect large amounts of data (eg, big data) to then use to improve quality of care, improve patient safety, and lower costs

TIGER Initiative

- Nursing profession established specific competencies for practicing nurses to work in a "new system" supported by HIT and use of <u>informatics</u>

7

A Brief History: Athletic Training Efforts

- Athletic Training Education Competencies
 - Use of health care informatics identified as core competency for postprofessional education in 2013 (CAATE, 2013)
 - Use of health care informatics identified as core competency for professional education in 2020 standards (CAATE, 2018)
- Professional Calls to Action
 - Athletic Training Research Agenda: calls for research in areas of HIT (including the generation of "big data") and health care economics (Eberman, 2018)
 - "Research at the point of care: using electronic medical record systems to generate clinically meaningful evidence" (Marshall and Lam, JAT, 2020)

8

ATSU Perspective: HIT and informatics

- Our program views HIT and informatics as foundational to the core competencies
- That is, HIT and informatics are integral to achieving the remaining core competencies
 - 1. Evidence-based practice
 - 2. Patient-centered care
 - 3. Interdisciplinary collaboration
 - 4. Professionalism
 - 5. Quality improvement

HIT: Evidence-Based Practice

- - Identify appropriate search engines and databases
 - $\ {\sf Systematic\ approach\ to\ searches}$
 - Appropriate use of keywords
 - Search techniques (eg, Boolean)
- Information and knowledge management
 - Use of appropriate software (eg, reference software)
 - Ensure that evidence is available at point-of-care

10

HIT: Patient-Centered Care

- · Patient engagement
 - Inclusion of patient as an active member of the health care team $_{\mbox{\tiny (Coulter, 2012)}}$
 - Benefits: enhanced decisions, improved safety, and better outcomes (Longtin, 2010; Davis, 2011;
 - Two-way communication is key (Holzmanler, 2012)
 - Frames clinician-patient relationship as a partnership
 - Challenges*
 - Lack of time (clinician) and health literacy (patient)

11

HIT: Patient-Centered Care

- Bridging the gap between clinician and patient
 - Internet: patient decision tools
 - Dartmouth Decision Points, Choosingwisely.org
- Bridging the gap between clinician and patient
 - Emerging technologies: text messaging, mobile devices, smart phone apps, social media
- - Use of technology to provide patient care
 Benefits: reduce travel time, reduce costs, reduce disparity for underserved and/or rural communities

HIT: Interdisciplinary Collaboration

- Like patient-centered care, communication is key
 - $\,-\,$ This gets at the sub-competency of effective communications
 - Rich discussions to be had regarding communicating with other healthcare professionals

13

HIT: Professionalism

- Privacy
 - HIPAA and FERPA regulations
 - Management and storage of protected health information
- Ethics
- Maintaining professionalism in a digital world
 - Communications using email and texting
 - Blurring the personal-professional lines in social media

14

HIT: Quality Improvement

- The use of informatics to support QI initiatives
 - Collect practice data
 - Analyze data and identify practice gaps
 - Implement a QI effort to address gaps

The Data-to-Wisdom Continuum

- Data
 Raw characters without meaning
- - Processed data that identifies patterns and/or that creates meaning
- Knowledge
 Connecting interrelated concepts to form one concept
- Wisdom
 Applying knowledge at the right place and at the right time

16

Context: The Use of Data by Businesses

- Examples Google
- FacebookNetflix
- UPS
- Amazon
- Benefits
 - Inform and improve decision making
 Revamp and refine operations
 Improve performance

17

Context The Use of Data in Health Care

- Similar benefits to businesses
 Inform and improve clinical decisions
 Improve performance at point-of-care
 Enhancing overall quality of care
- Long-term goals in healthcare
 Predictive analytics
 Personalized medicine

- Example
 Atul Gawande's book, "Better"
 Use of patient data led to improvement in patient health and safety

Using Patient Data to Improve Care

- Patient documentation can be an excellent source of data
- Major considerations
 - High-quality data relies on the clinician's ability to document patient care in a systematic, structured, and standardized manner
 - Privacy and confidentiality
 - Best to follow HIPAA guidelines: eg, remove protected health information to de-identify patient records

19

Methods for Collecting Data

- Spreadsheet software (eg, Excel)
 - Can use functions (eg, drop-down menus) and formulas to support data collection and analysis
- Electronic medical records (EMR) can be a 2-for-1
 - A good EMR will allow for:
 - #1: comprehensive clinical documentation of patient care
 - #2: analyses of clinical practice characteristics
 - Should incorporate and capture all practice characteristic variables
 - eg, sport, injury, ICD codes, CPT codes, fee schedules

20

Real-Life Example: Practice Characterization

- Informatics assignment
- Primary objective: learn how to turn data into information
 - Get into the habit of <u>collecting</u> data: basis for quality improvement
 - Frame as a practice characterization project

Step 1: Identify a Practice Component

- Basic components of clinical practice
 - Injury characteristics
 - Treatment characteristics
 - Value characteristics
- Pose a SIMPLE but clinically important question
 - What types of (and how many) injuries do I manage annually?
 - $-\,$ What is the $\frac{\mbox{average duration}}{\mbox{duration}}$ of care per injury?
 - What are the outcomes at return-to-play for patients with ankle sprain injuries?

22

Step 2: Identify the Variables Needed

- What variables are needed to answer your question?
- Injury characteristics
 - Patient demographics
 - Age, sex, sport
 - Injury demographics
 - MOI, body part, side, diagnosis (ICD-9/ICD-10 codes)

23

Step 3: Create a System and Process for Data Collection

- System
 - Spreadsheet software
 - Electronic medical record
- Process
 - When and how will the data be collected?
 - Must ensure data quality and integrity

Step 4: Collect and Analyze the Data

- Basic Excel functions can facilitate data collection and analysis
- · Data validation
 - Drop-down menus for stock variables
 - eg, gender: male, female; sport: soccer, volleyball, etc.
 - Preserves data integrity for analysis
- Divot table
 - Aggregates data to produce basic reports

25

Step 4: Collect and Analyze the Data

- · Mathematical functions
 - Frequency counts (sum)
 - Averages (avg)
 - $\ {\sf Calculations} \ {\sf between} \ {\sf columns} \ {\sf (eg, multiplication)}$
- When in doubt, use YouTube as a reference

26

Step 5: Reflect on Findings

- Presentation of findings
 - Demonstrate ability to turn data to information
- What did you learn about your clinical practice?
 - How can you use the information in a meaningful way?
- What challenges did you face while collecting data and how can you address them moving forward?
 - Workflow issues: improve systems and processes

Linking Informatics and QI

- STEEP: six aims of improvement
 - Using patient data to assess STEEP
- Case study: Athletic Training Practice-Based Research Network
 - Use of Ottawa Ankle Rules
 - Example of studying clinical practice using real-life patient documentation and implementing a solution to address the problem

28

Turning Data into Information

Other avenues to access sport-related injury data: sport-specific databases

- National Electronic Injury Surveillance System (NEISS)
- NCAA Injury Surveillance System (Datalyst)
- Athletic Training Practice-Based Research Network (AT-PBRN)

29

Summary

- The use of health information technology
 Goes beyond electronic records

 - Be on the lookout for academic EMRs
- Fundamentals of healthcare informatics
 Start with the data-to-wisdom continuum
 Use real-life examples
- Teaching strategies: basic healthcare informatics
 Get their hands dirty → Go COUNT something interesting!
 Collect, extract, process, and/or analyze data

Kenny Lam, Sc.D., ATC Professor of Clinical Research Director of the AT-PBRN <u>klam@atsu.edu</u> Twitter: @KennyLam_ atpbrn.org AT X PBRN